# Phosphinidene reactivity toward unsaturated phosphorus heterocycles 

Mark J.M. Vlaar ${ }^{\text {a }}$, Frans J.J. de Kanter ${ }^{\text {a }}$, Marius Schakel ${ }^{\text {a }}$, Martin Lutz ${ }^{\text {b }}$, Anthony L. Spek ${ }^{\text {b }}$, Koop Lammertsma ${ }^{\text {a,* }}$<br>${ }^{\text {a }}$ Department of Organic and Inorganic Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1083, NL-1081 HV, Amsterdam, The Netherlands<br>${ }^{\mathrm{b}}$ Bijvoet Center for Biomolecular Research, Department of Crystal and Structural Chemistry, Utrecht University, Padualaan 8, NL-3584 CH Utrecht, The Netherlands

Received 10 July 2000; accepted 23 August 2000


#### Abstract

The transient electrophilic phosphinidene complex $\mathrm{PhPW}(\mathrm{CO})_{5}$ reacts in the presence of CuCl at room temperature with phospholene 2 and phospholes $\mathbf{4 a - c}$ to give the corresponding $\mathrm{W}(\mathrm{CO})_{5}$ complexed products $\mathbf{3}$ and $\mathbf{5 a}-\mathbf{c}$. The intermediate phosphoranylidene phosphine complexes, formed, from the addition of $\mathrm{PhPW}(\mathrm{CO})_{5}$ to the phosphorus atom of the substrates, are characterized by NMR spectroscopy and by a single crystal X-ray structure determination for the one generated from phospholene 2. This intermediate $\mathbf{8}$ is a CuCl -complexed dimer, which speculatively results from dissociating the phosphole -CuCl tetramer on insertion of $\mathrm{PhPW}(\mathrm{CO})_{5}$ into the $\mathrm{P}-\mathrm{Cu}$ bonds. Reacting $\mathrm{PhPW}(\mathrm{CO})_{5}$ with phospholene 2 at $110^{\circ} \mathrm{C}$ in the absence of CuCl gives besides the $\mathrm{W}(\mathrm{CO})_{5}$-complexed phospholene $\mathbf{3}$ also a bisphospholene $-\mathrm{W}(\mathrm{CO})_{4}$ complex $\mathbf{1 3}$. The formation of $\mathbf{1 3}$ is attributed to a ligand exchange reaction in the intermediate phosphinidene-phospholene adduct. © 2001 Elsevier Science B.V. All rights reserved.


Keywords: Phosphinidene; Reactivity; Unsaturated phosphorus heterocycles

## 1. Introduction

Since Mathey showed that terminal phosphinidene complexes $\mathrm{RPM}(\mathrm{CO})_{5}(\mathrm{M}=\mathrm{W}, \mathrm{Cr}, \mathrm{Mo})$ can be generated in situ from phosphanorbornadienes [1], the car-bene-like reactivity of these electrophilic species toward various functional groups has been scrutinized [2]. 1,2Additions occur with simple $\mathrm{C}=\mathrm{C}$ and $\mathrm{C} \equiv \mathrm{C}$ bonds. With dienes larger five-membered ring structures result from a subsequent 1,3 -sigmatropic shift and by direct 1,4 -addition [3]. Additions to $\mathrm{C}=\mathrm{N}$ bonds, via pre-association to the N -atom, have been reported to give heterocycles in which two imines are incorporated [4], but the smaller aza-phosphiranes are known too [5]. Bond insertions of $\mathrm{PhPW}(\mathrm{CO})_{5}$ are also well established. They have been shown to occur for $\mathrm{O}-\mathrm{H}[1,5,6], \mathrm{N}-\mathrm{H}[6,7]$,

[^0]and $\mathrm{C}-\mathrm{H}[8]$ bonds and even for selected $\mathrm{C}-\mathrm{C}$ [9] and $\mathrm{C}-\mathrm{P}$ [10] bonds giving a broad spectrum of phosphine derivatives. Association of the phosphinidene complex to the P -atom of phosphines $\mathrm{PR}_{3}(\mathrm{R}=$ alkyl, phenyl $)$ reportedly gives complexes of phosphoranylidene phosphines $\left(\mathrm{R}_{3} \mathrm{PP}(\mathrm{Ph}) \mathrm{W}(\mathrm{CO})_{5}\right)$ [11] which can be applied as phospha-Wittig reagents to generate $\mathrm{P}=\mathrm{C}$ bonds $[11,12]$. Interested in expanding the scope of $\mathrm{PhPW}(\mathrm{CO})_{5}$ we decided to study its reactivity toward unsaturated organophosphorus compounds. Our intend was to establish whether addition to a $\mathrm{C}=\mathrm{C}$ bond can be accomplished in the presence of a P-group. Here we report on the reactions with a phospholene and with various phospholes.

## 2. Results and discussion

Reaction of the complexed phosphinidene precursor 1 with phospholene 2 at room temperature in the
presence of more than one equivalent of CuCl afforded to our surprise the $\mathrm{W}(\mathrm{CO})_{5}$-complexed phospholene 3 in $90 \%$ yield as the sole product. Likewise, reaction of $\mathbf{1}$ with phospholes $(\mathbf{4 a}-\mathbf{c})$ resulted only in the $\mathrm{W}(\mathrm{CO})_{5^{-}}$ complexed phospholes ( $\mathbf{5 a}-\mathbf{c}$ ), also in good yields. These reactions seem perplexingly simple as the substrates are merely complexed with a $\mathrm{W}(\mathrm{CO})_{5}$ group. However, the addition of this transition metal group cannot be a simple transfer from 1 . We wondered about the role of $\mathrm{PhPW}(\mathrm{CO})_{5}$ that must be generated from 1 under the reaction conditions. It is evident that no addition to $\mathrm{C}=\mathrm{C}$ bonds occur, but does association to the P-atom take place? It also surprised us that more than one equivalent of CuCl is needed for the reactions, whereas only catalytic amounts are used for generating $\mathrm{PhPW}(\mathrm{CO})_{5}$ from 1. We observed no reaction at room temperature with less than one equivalent.


Monitoring the reactions of $\mathbf{1}$ with 2 and with $\mathbf{4 a}, \mathbf{b}$ (not $\mathbf{4 c}$ ) by ${ }^{31} \mathrm{P}-\mathrm{NMR}$ showed the formation of intermediates with PP bonds as evidenced by their ${ }^{1} J(\mathrm{P}-\mathrm{P})$ coupling constants. Executing the reaction of 1 with 2 for a short time (ca. 75 min ), to maximize the formation of an intermediate (8), enabled its isolation and even its purification using low temperature chromatography on silica gel. The ${ }^{31} \mathrm{P}-\mathrm{NMR}$ doublets of $\mathbf{8}$ at $\delta$ -54.7 and 31.1 ppm suggest a phosphinidene-phospholene complex, although it has a relatively small ${ }^{1} J(\mathrm{P}-\mathrm{P})$ coupling constant of 294 Hz for a $\mathrm{P}=\mathrm{P}$ bond. The ${ }^{31} \mathrm{P}-\mathrm{NMR}$ data for the more reactive and only in situ observed phosphinidene-phosphole complexes 9a and 9b are similar.



7a $R^{\prime \prime}=E t$

It is informative to compare these spectroscopic data with those of phosphoranylidenephosphines. Mathey reported the very reactive, and difficult to purify $\mathrm{Bu}_{3} \mathrm{P}=\mathrm{PRW}(\mathrm{CO})_{5}(6, \mathrm{R}=\mathrm{Ph}, \mathrm{Me}$, allyl) complexes to
have ${ }^{31} \mathrm{P}-\mathrm{NMR}$ resonances for the phosphinidene and phosphine phosphorus atoms of -100 to -145 and $31-35 \mathrm{ppm}$, respectively, with ${ }^{1} J(\mathrm{P}-\mathrm{P})$ coupling constants ranging from 430 to 444 Hz [11]. Of the more stable complexes $\mathrm{R}_{3} \mathrm{P}=\mathrm{P}\left(\mathrm{CO}_{2} \mathrm{Et}\right) \mathrm{W}(\mathrm{CO})_{5}(7, \mathrm{R}=\mathrm{Bu}$, Et) the Et derivative 7a (confirmed by a crystal structure determination) has corresponding phosphorus chemical shifts of -97 and 38 ppm and a smaller coupling constant of 361 Hz . These comparisons do indeed suggest a similar association of $\mathrm{PhPW}(\mathrm{CO})_{5}$ to the phospholene and phospholes of reaction 1 and 2.

To establish unequivocally the structure of the more stable intermediate, we resorted to its single crystal structure analysis. Surprisingly, intermediate $\mathbf{8}$ is not a regular phosphoranylidene phospholene complex, but rather a CuCl -complexed dimer (Fig. 1, Scheme 1). We suggest that similar CuCl -complexed dimers $(\mathbf{9 a - c})$ are formed in the reaction of complex $\mathbf{1}$ with phospholes $\mathbf{4 a}-\mathbf{c}$. The compound crystallizes with one molecule in the asymmetric unit, which has approximately noncrystallographic inversion symmetry. Selected bond lengths and angles for $\mathbf{8}$ are given in the caption of Fig. 1. The organophosphorus part of the structure is as expected. The two PP bond lengths of 2.1814(19) and $2.1751(18) \AA$ are slightly longer (ca. $0.02 \AA$ ) than those reported for 7a and the PW bonds of 2.5597(13) and $2.5559(13) \AA$ are correspondingly shorter. The $5-6^{\circ}$ larger PPW angles of $115.11(6)^{\circ}$ and $116.09(6)^{\circ}$ may indicate more congestion in 8 . The PCu bond lengths of $2.1979(14)$ and $2.1955(14) \AA$ between the organophosphorus parts and the central $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$ ring are in line with those reported for $\left[\mathrm{Ar}_{3} \mathrm{PCuCl}\right]_{2}$ complexes [13]. The bridging Cl atoms of the $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$ ring are bound asymmetrically, i.e. with $\mathrm{Cu}(11) \mathrm{Cl}(11)$ and $\mathrm{Cu}(11) \mathrm{Cl}-$ (12) bond lengths of $2.2661(14)$ and $2.3518(14) \AA$, respectively, which is in line with related studies on $\left[(\text { cyclohexyl })_{3} \mathrm{PCuCl}\right]_{2}$ and $\left[(o \text {-tolyl })_{3} \mathrm{PCuCl}\right]_{2}$ [13]. The Cu atoms are in distorted trigonal planar environments, $\Sigma$ angles of $360.0^{\circ}$ and $359.9^{\circ}$, with obtuse ClCuCl angles of $99.13(5)^{\circ}$ and $99.14(5)^{\circ}$; the angles at the chlorines are acute, i.e. $80.94(4)^{\circ}$ and $80.83(4)^{\circ}$. The $\mathrm{Cu} \cdots \mathrm{Cu}$ distance of $2.9954(9) \AA$ is of similar length as those of related [ $\mathrm{R}_{3} \mathrm{P}_{2} \mathrm{Cu}_{2} \mathrm{Cl}_{2}$ ] systems [13]. In analogy with these earlier studies we consider this distance to be too long to represent a formal metal-metal bond.


Scheme 1. Molecular structure of $\mathbf{8}$ in the crystal.


Fig. 1. Displacement ellipsoid plot of $\mathbf{8}$ drawn at the $50 \%$ probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths (A) and angles $\left({ }^{\circ}\right)$ : W11-P11 2.5597(13), W12-P12 2.5559(13), Cu11-P11 2.1979(14), Cu12-P12 2.1955(14), P11-P21 2.1814(19), P12-P22 2.1751(18), P11-C131 1.826(5), P12-C132 1.841(4), Cu11-Cl11 2.2661(14), Cu12-Cl12 2.2672(13), Cu11-Cl12 2.3518(14), Cl11-Cu12 2.3501(14); P21-P11-W11 115.11(6), P22-P12-W12 116.09(6), Cu11-P11-W11 119.94(6), Cu12-P12-W12 119.11(5), C131-P11-W11 114.34(16), C132-P12-W12 114.20(16), Cl11-Cu11-Cl12 99.13(5), Cl12-Cu12-Cl11 99.14(5), Cu11-Cl11-Cu12 80.89(4), Cu12-Cl12-Cu11 80.83(4).

The presence of CuCl in the crystal structure of $\mathbf{8}$ may explain why more than one equivalent is needed in the reactions. Reportedly, 6 and 7 are formed at $25-40^{\circ} \mathrm{C}$ in THF as solvent without the use of CuCl . No transfer of the $\mathrm{W}(\mathrm{CO})_{5}$ group from the phosphinidene to the phosphine phosphorus was observed in these systems [11]. Interestingly, reaction of complex 1 with tributylphosphine in the presence of more than one equivalent of CuCl does give the $\mathrm{W}(\mathrm{CO})_{5}$ complexed tributylphosphine (11). The ${ }^{1} J(\mathrm{P}-\mathrm{P})$ coupling constant for the intermediate $\mathbf{1 0}$ of 286 Hz is 158 Hz smaller than that for $\mathbf{6 a}$. This relatively small coupling constant, which is

similar to those of $\mathbf{8}$ and $9 \mathbf{a}-\mathbf{c}$, is attributed to the complexation of the phosphoranylidene phosphine complexes to CuCl . We suggest that the $\mathrm{W}(\mathrm{CO})_{5}$ transfer in $\mathbf{8}$ and $\mathbf{9 a - c}$ to generate $\mathbf{3}$ and 5, respectively, proceeds via a $\pi$-complex with concurrent elimination of rapidly oligomerizing ( Cu -complexed) $\mathrm{PhP} ; \pi$-complexes between transition metal groups and $\mathrm{P}=\mathrm{P}$ bonds are well established [14].

Why is CuCl present in the crystal structure of $\mathbf{8}$ ? It is likely that CuCl coordinates with phospholene 2 , the phospholes $\mathbf{4 a}-\mathbf{c}$, and $\mathrm{Bu}_{3} \mathrm{P}$. In fact, Nelson et al. showed $\mathrm{Cu}(\mathrm{I})$ halides to coordinate to 1-phenyl-3,4dimethylphosphole ( L ) to form various complexes of the type $\left[\mathrm{L}_{n} \mathrm{CuX}\right]_{m}(n=1,2,3 ; m=4,2,1)$. They reported a crystal structure for the tetramer [15]. The $\mathrm{P}_{4} \mathrm{Cu}_{4} \mathrm{I}_{4}$ core
of this structure has a $\mathrm{C}_{2}$-distorted cubic form. With bulkier ligands dimers [13,16] and monomers [17] were found. We speculate that reaction of 1 occurs with the $[\mathrm{LCuCl}]_{4}$ tetramer (12) of the phospholene (2), phospholes $(\mathbf{4 a}-\mathbf{c})$, and $\mathrm{Bu}_{3} \mathrm{P}$ with insertion of $\mathrm{PhPW}(\mathrm{CO})_{5}$ into the PCu coordinating bonds to result in the $\left[\mathrm{L}^{\prime} \mathrm{CuCl}\right]_{2}$ dimers $\mathbf{8}$ or $\mathbf{9 a}-\mathbf{c}$, or $\mathbf{1 0}$, respectively. We attribute the cleavage of the tetramer to the more congested nature of the $\mathrm{R}_{2} \mathrm{P}(\mathrm{Ph})=\mathrm{PPhW}(\mathrm{CO})_{5}$ ligand.


To further inspect the impact of CuCl on the course of the reactions we conducted experiments without this catalyst. Reaction of $\mathbf{1}$ with phospholene $\mathbf{2}$ in toluene at $110^{\circ} \mathrm{C}$ gave again complex 3, but also bisphospholene complex 13 in a $1: 1$ ratio (Scheme 2). The formation of 3 illustrates that the $\mathrm{W}(\mathrm{CO})_{5}$-shift in intermediate $\mathbf{8}$ is independent of CuCl . However, CuCl may facilitate the elimination of PhP and the concurrent transfer of $\mathrm{W}(\mathrm{CO})_{5}$. Because of its rather complicated ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum, due to the higher order couplings, we used a single crystal X-ray structure determination (Fig. 2) to establish with confidence the identity of $\mathbf{1 3}\left(\delta\left({ }^{31} \mathrm{P}\right)=1.8\right.$ $\mathrm{ppm})$. Whereas formation of $\mathbf{1 3}$ may be rationalized by a simple thermally induced ligand exchange of $\mathbf{3}$, heating

Scheme 2.


Fig. 2. Displacement ellipsoid plot of $\mathbf{1 3}$ drawn at the $50 \%$ probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right): W-\mathrm{P} 12.4962(10), \mathrm{W}-\mathrm{P} 2$ 2.5138(11), P1-C7 1.817(4), P2-C19 1.821(4), P1-C1 1.843(5), P2-C13 1.845(4), P1-C4 1.844(4), P2-C16 1.833(4), C2-C3 1.308(9), C14-C15 1.343(6), C1C2 1.508(7), C13-C14 1.525(6), C3-C4 1.508(7), C15-C16 1.518(6); P1-W-P2 95.23(3), C7-P1-W 113.49(13), C19-P2-W 115.69(14), C25-W-P1 86.63(12), C26-W-P2 88.04(13), C27-W-P1 88.10(11), C27-W-P2 86.63(13), C28-W-P1 87.74(12), C28-W-P2 91.28(13), C1-P1-C4 92.5(2), C16-P2-C13 92.3(2).
of this compound together with phospholene $\mathbf{2}$ at $110^{\circ} \mathrm{C}$ for several hours does not give any 13. It seems then more plausible that ligand exchange occurs in the intermediate phosphinidene-phosphole complex. Indeed, heating a mixture of isolated $\mathbf{8}$ and $\mathbf{2}$ at $110^{\circ} \mathrm{C}$ does result in a mixture of bisphospholene complex 13 and 3.

Phosphoranylidene-phosphines can be considered phospha-Wittig reagents. In fact, 6, but not the more stable 7, are known to react with aldehydes only to form incipient phosphaalkenes, which can subsequently be trapped with, for example, methanol [11,12]. However, we did not observe a reaction of $\mathbf{8}$ with benzaldehyde nor with isobutyraldehyde, but obtained only 3. The formal phosphinidene $\mathrm{O}-\mathrm{H}$ insertion product $[(\mathrm{MeO}) \mathrm{PHPh}] \mathrm{W}(\mathrm{CO})_{5}$ results in the presence of methanol as trapping reagent.

## 3. Conclusions

Transient electrophilic phosphinidene complex PhP-
$\mathrm{W}(\mathrm{CO})_{5}$ adds to the phosphorus center of phospholenes (2) and phospholes ( $\mathbf{4 a} \mathbf{a} \mathbf{c}$ ) instead of reacting with their olefinic bonds. The resulting intermediates convert to the corresponding $\mathrm{W}(\mathrm{CO})_{5}$-complexed products 3 and $\mathbf{5 a}-\mathbf{c}$ with transfer of the transition metal group and expulsion of PPh. The intermediate phosphoranylidenephosphine complexes are identified by NMR spectroscopy. A crystal structure of the one generated from phospholene $\mathbf{2}$ showed it to be a CuCl -complexed dimer (8). Generating $\mathrm{PhPW}(\mathrm{CO})_{5}$ in the absence of CuCl and reacting it with phospholene 2 gives besides $\mathbf{3}$ also bisphospholene complex 13.

## 4. Experimental

All experiments were performed under an atmosphere of dry nitrogen. Solids were dried in vacuum and liquids were distilled (under $\mathrm{N}_{2}$ ) prior to use. Solvents were used as purchased except for toluene, which was distilled over sodium, and $\mathrm{CHCl}_{3}$, which was dried over molecular sieves. NMR spectra were recorded on Bruker AC $200\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$ and WM 250 spectrometers ( ${ }^{31} \mathrm{P}$ ) using $\mathrm{SiMe}_{4}\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$ and $85 \%$ $\mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right)$ as external standards, IR spectra on a Mattson-6030 Galaxy FTIR spectrophotometer, and high-resolution mass spectra (HRMS) on a Finnigan Mat 90 spectrometer. 1-Phenyl-3,4-dimethylphospholene (2) [18], 1-phenyl-3,4-dimethylphosphole (4a) [19], 1,3,4-trimethylphosphole (4b) [19] and 1,2,5triphenylphosphole (4c) [20] were prepared according to literature procedures.

### 4.1. Reaction of $\mathbf{1}$ with 1-phenyl-3,4-dimethylphospholene (2)

### 4.1.1. Formation of $\left[(\mathrm{Me})_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{P}(\mathrm{Ph})=\mathrm{PPhW}(\mathrm{CO})_{5} \mathrm{CuCl}\right]_{2}(\boldsymbol{8})$

A mixture of complex $1(0.62 \mathrm{~g}, 0.95 \mathrm{mmol}), \mathbf{2}(0.18$ $\mathrm{g}, 0.95 \mathrm{mmol})$ and $\mathrm{CuCl}(0.11 \mathrm{~g}, 1.10 \mathrm{mmol})$ in 5 ml of $\mathrm{CHCl}_{3}$ was stirred at room temperature (r.t.) for 75 min . Chromatography on activated silica at $-15^{\circ} \mathrm{C}$ with pentane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2:1) as eluent and crystallization from a hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ mixture gave $0.33 \mathrm{~g}(47.4 \%$ (based on 1) of complex $\mathbf{8}$ as yellow crystals: ${ }^{31} \mathrm{P}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta=31.1\left(\mathrm{~d},{ }^{1} J(\mathrm{P}-\mathrm{P})=294 \mathrm{~Hz}, \mathrm{P}-\mathrm{P}-\mathrm{W}\right)$, $-54.7\left(\mathrm{~d},{ }^{1} J(\mathrm{P}-\mathrm{P})=294 \mathrm{~Hz}, \mathrm{P}-\mathrm{P}-\mathrm{W}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta=1.72\left(\mathrm{~d},{ }^{4} J(\mathrm{P}-\mathrm{H})=5.0 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.0-3.5\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 7.3-7.7(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta=199.7\left(\mathrm{~d},{ }^{2} J(\mathrm{P}-\mathrm{C})=16.1 \mathrm{~Hz}\right.$, trans -CO$)$, $197.2\left(\mathrm{~d},{ }^{2} J(\mathrm{P}-\mathrm{C})=3.9 \mathrm{~Hz},{ }^{1} J(\mathrm{P}-\mathrm{W})=125.4 \mathrm{~Hz}\right.$, cis CO), $137.5\left(\mathrm{dd},{ }^{3} J(\mathrm{P}-\mathrm{C})=5.1 \mathrm{~Hz},{ }^{2} J(\mathrm{P}-\mathrm{C})=13.7 \mathrm{~Hz}\right.$, $o-\mathrm{Ph}), 133.1\left(\mathrm{~d},{ }^{4} J(\mathrm{P}-\mathrm{C})=3.0 \mathrm{~Hz}, p-\mathrm{Ph}\right), 131.8(\mathrm{~d}$, $\left.{ }^{3} J(\mathrm{P}-\mathrm{C})=8.6 \mathrm{~Hz}, m-\mathrm{Ph}\right), 130.4\left(\mathrm{~d},{ }^{1} J(\mathrm{P}-\mathrm{C})=11.1 \mathrm{~Hz}\right.$, ipso-Ph), $130.2\left(\mathrm{~d},{ }^{4} J(\mathrm{P}-\mathrm{C})=3.0 \mathrm{~Hz}, p-\mathrm{Ph}\right), 129.4(\mathrm{~d}$, $\left.{ }^{3} J(\mathrm{P}-\mathrm{C})=11.5 \mathrm{~Hz}, m-\mathrm{Ph}\right), 128.8\left(\mathrm{dd},{ }^{3} J(\mathrm{P}-\mathrm{C})=3.5\right.$
$\left.\mathrm{Hz},{ }^{2} J(\mathrm{P}-\mathrm{C})=7.6 \mathrm{~Hz}, o-\mathrm{Ph}\right), 128.6\left(\mathrm{~d},{ }^{2} J(\mathrm{P}-\mathrm{C})=4.5\right.$ $\mathrm{Hz}, \mathrm{C}=\mathrm{C}), 124.9\left(\mathrm{~d},{ }^{1} J(\mathrm{P}-\mathrm{C})=59.7 \mathrm{~Hz}\right.$, ipso- Ph$), 36.5(\mathrm{~d}$, $\left.{ }^{1} J(\mathrm{P}-\mathrm{C})=42.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 16.7\left(\mathrm{dd},{ }^{3} J(\mathrm{P}-\mathrm{C})=11.4 \mathrm{~Hz}\right.$, $\left.{ }^{4} J(\mathrm{P}-\mathrm{C})=3.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): v(\mathrm{CO})=$ 1934 (s), 2067 (w).

### 4.1.2. Formation of [1-phenyl-3,4-dimethylphos-

 pholene](pentacarbonyl)tungsten (3)A mixture of complex $1(0.17 \mathrm{~g}, 0.25 \mathrm{mmol}), 2(44 \mathrm{mg}$, 0.23 mmol ) and CuCl in $\mathrm{CHCl}_{3}$ was stirred overnight at r.t. Evaporation to dryness and chromatography on silica with pentane-toluene (3:1) gave $117 \mathrm{mg}(90 \%)$ of 3 as colorless crystals. Spectroscopic data for $\mathbf{3}$ are in accord with literature data [21].

### 4.1.3. Formation of $\mathbf{3}$ and cis-bis-[1-phenyl-3,4-

 dimethylphospholene]-(pentacarbonyl)tungsten (13)A solution of complex $\mathbf{1}(0.29 \mathrm{~g}, 0.45 \mathrm{mmol})$ and $2(0.26$ $\mathrm{g}, 1.3 \mathrm{mmol}$ ) in 4 ml of toluene was heated at $110^{\circ} \mathrm{C}$ for 2 h . Evaporation to dryness and chromatography on silica with pentane-toluene (4:1), gave $86 \mathrm{mg}(37 \%)$ of 3 and $99 \mathrm{mg}(32 \%)$ of $\mathbf{1 3}$. Colorless crystals of $\mathbf{1 3}$ were obtained after recrystallization from pentane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ : m.p. ${ }^{96}-97{ }^{\circ} \mathrm{C} ;{ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \quad \delta=1.8 \quad\left({ }^{1} J\left({ }^{31} \mathrm{P}-\right.\right.$ $\left.\left.{ }^{183} \mathrm{~W}\right)=224.7 \mathrm{~Hz}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=1.54(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 2.6-2.9\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 7.17-7.24(\mathrm{~m}, 10 \mathrm{H}$, phenyl); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=206.0(\mathrm{~m}$, trans -CO$)$, $202.2(\mathrm{t}$, ${ }^{2} J(\mathrm{P}-\mathrm{C})=7.7 \mathrm{~Hz}$, cis -CO$), 138.9\left(\mathrm{~m},{ }^{1+3} J(\mathrm{P}-\mathrm{C})=30.8\right.$ Hz, ipso-Ar), 129.6-128.0 (Ar), 129.6 (s, C=C), 44.6 (m, $\left.{ }^{1+3} J(\mathrm{P}-\mathrm{C})=27.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 16.0\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$. IR $(\mathrm{KBr}$, $\left.\mathrm{cm}^{-1}\right): v(\mathrm{CO})=2062(\mathrm{~s}), 2089(\mathrm{w})$; HRMS. Calc. for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{P}_{2} \mathrm{WO}_{4}$ : 676.11293; Found: 676.11279.

### 4.2. Reaction of $\mathbf{1}$ with phospholes $\mathbf{4 a - c}$

### 4.2.1. Reaction of $\mathbf{1}$ with

## 1-phenyl-3,4-dimethylphosphole (4a)

A solution of complex $1(0.28 \mathrm{~g}, 0.42 \mathrm{mmol}), \mathbf{4 a}(0.20$ $\mathrm{g}, 1.1 \mathrm{mmol}$ ) and CuCl in 5 ml of $\mathrm{CHCl}_{3}$ was stirred overnight at r.t. Filtration, evaporation to dryness and chromatography on silica with pentane-toluene (4:1) gave $0.16 \mathrm{~g}(74 \%)$ of $\mathbf{5 a}$ as a yellow solid. Spectroscopic data for 5a are in accord with literature data [22]. Monitoring the reaction by ${ }^{31} \mathrm{P}-\mathrm{NMR}$ showed the formation of intermediate 9a: ${ }^{31} \mathrm{P}-\mathrm{NMR} \delta=40.5\left(\mathrm{~d},{ }^{1} J(\mathrm{P}-\right.$ $\mathrm{P})=316 \mathrm{~Hz}, \mathrm{P}-\mathrm{P}-\mathrm{W}),-53.3\left(\mathrm{~d},{ }^{1} J(\mathrm{P}-\mathrm{P})=316 \mathrm{~Hz}\right.$, $\mathrm{P}-\mathrm{P}-\mathrm{W})$.

### 4.2.2. Reaction of $\mathbf{1}$ with 1,3,4-trimethylphosphole (4b)

A solution of complex $\mathbf{1}(0.89 \mathrm{~g}, 1.35 \mathrm{mmol}), \mathbf{4 b}(0.17$ $\mathrm{g}, 1.35 \mathrm{mmol})$ and $\mathrm{CuCl}(0.17 \mathrm{~g}, 0.17 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}$ was stirred overnight at r.t. Filtration, evaporation to dryness and chromatography on silica with pentane-toluene ( $4: 1$ ) gave 0.25 g ( $41 \%$ ) of $\mathbf{5 b}$ as a yellow oil. Spectroscopic data for $\mathbf{5 b}$ were identical to an authentic sample [23]. Monitoring the reaction by ${ }^{31} \mathrm{P}-\mathrm{NMR}$
showed the formation of intermediate 9b: ${ }^{31} \mathrm{P}-\mathrm{NMR}$ $\delta=36.9\left(\mathrm{~d},{ }^{1} J(\mathrm{P}-\mathrm{P})=294 \mathrm{~Hz}, \mathrm{P}-\mathrm{P}-\mathrm{W}\right),-72.6(\mathrm{~d}$, $\left.{ }^{1} J(\mathrm{P}-\mathrm{P})=294 \mathrm{~Hz}, \mathrm{P}-\mathrm{P}-\mathrm{W}\right)$.

### 4.2.3. Reaction of $\mathbf{1}$ with 1,2,5-triphenylphosphole (4c)

A solution of complex $1(0.29 \mathrm{~g}, 0.45 \mathrm{mmol}), 4 \mathbf{c}(0.14$ $\mathrm{g}, 0.45 \mathrm{mmol}$ ) and CuCl in toluene was heated at $55^{\circ} \mathrm{C}$ for 2 h . Filtration, evaporation to dryness and chromatography on silica with pentane-toluene (1:1) gave $0.17 \mathrm{~g}(61 \%)$ of $\mathbf{5 c}$ as a yellow solid. Spectroscopic data for 5 c were identical to an authentic sample [24].

### 4.3. Reaction of $\mathbf{1}$ with tributylphosphine

A solution of complex $1(0.14 \mathrm{mg}, 0.21 \mathrm{mmol})$, tributylphosphine $(53 \mu l, 0.21 \mathrm{mmol})$ and $\mathrm{CuCl}(22 \mathrm{mg}$, 0.22 mmol ) in 3 ml of $\mathrm{CHCl}_{3}$ was stirred at r.t. for 4.5 h. Evaporation to dryness and chromatography on silica with pentane-dichloromethane (4:1) gave 61 mg of $\mathbf{1 1}$ as a light yellow oil. Spectroscopic data for $\mathbf{1 1}$ are in accord with literature data [25]. Monitoring the reaction by ${ }^{31} \mathrm{P}-\mathrm{NMR}$ showed the formation of intermediate $\mathbf{1 0}$ : ${ }^{31} \mathrm{P}-\mathrm{NMR} \quad \delta=23.2\left(\mathrm{~d},{ }^{1} J(\mathrm{P}-\mathrm{P})=286 \mathrm{~Hz}, \mathrm{P}-\mathrm{P}-\mathrm{W}\right)$, $-79.7\left(\mathrm{~d},{ }^{1} J(\mathrm{P}-\mathrm{P})=286 \mathrm{~Hz}, \mathrm{P}-\mathrm{P}-\mathrm{W}\right)$.

### 4.4. Attempted reaction of $\boldsymbol{8}$ with aldehydes

### 4.4.1. Reaction in the presence of methanol

A solution of complex $1(0.24 \mathrm{~g}, 0.37 \mathrm{mmol}), 2(64 \mathrm{mg}$, 0.34 mmol ) and CuCl in 5 ml of $\mathrm{CHCl}_{3}$ was stirred at r.t. When the conversion of $\mathbf{1}$ to $\mathbf{8}$ was complete (as monitored by ${ }^{31} \mathrm{P}-\mathrm{NMR}$ ), one equivalent of benzaldehyde or isobutyraldehyde was added. After $5 \mathrm{~min}, 0.16$ $\mathrm{ml}(4.0 \mathrm{mmol})$ of MeOH was added and stirring was continued for 45 min . Evaporation to dryness and chromatography on silica with pentane-toluene (4:1) afforded $0.10-0.12 \mathrm{~g}(76-88 \%)$ of $[(\mathrm{MeO}) \mathrm{PHPh}]-$ $\mathrm{W}(\mathrm{CO})_{5}$ as a white solid. Spectroscopic data for $[(\mathrm{MeO}) \mathrm{PHPh}] \mathrm{W}(\mathrm{CO})_{5}$ are in accord with literature data [1].

### 4.4.2. Reaction without methanol

Complex 8 was synthesized in situ as described above. Addition of five equivalents of benzaldehyde or isobutyraldehyde and stirring overnight at r.t. yielded quantitatively complex 3 as indicated by ${ }^{31} \mathrm{P}-\mathrm{NMR}$.

### 4.5. X-ray crystallography

### 4.5.1. Crystal structure determination of complex $\boldsymbol{8}$

$\mathrm{C}_{46} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{Cu}_{2} \mathrm{O}_{10} \mathrm{P}_{4} \mathrm{~W}_{2}+$ solvent, $\mathrm{Fw}=1442.34^{1}$, yellow block, $0.36 \times 0.27 \times 0.09 \mathrm{~mm}^{3}$, triclinic, $P \overline{1}$ (no. 2), $a=10.7136(8), b=15.9667(13), c=20.2435(14) \AA, \alpha=$ 93.161(4), $\beta=103.032(3), \gamma=93.428(3)^{\circ}, V=3359.2(4)$

[^1]$\AA^{3}, Z=2, \rho=1.426 \mathrm{~g} \mathrm{~cm}^{-3} .^{1}$ A total of 29905 reflections were measured on a Nonius KappaCCD diffractometer with rotating anode $(\lambda=0.71073 \AA$ ) at a temperature of $100(2) \mathrm{K}$. A total of 14786 reflections were unique ( $R_{\mathrm{int}}=0.051$ ). The absorption correction was based on multiple measured reflections (program PLATON [26], routine mULABS, $\mu=4.25 \mathrm{~mm}^{-1,1},^{1} 0.54-$ 0.73 transmission). The structure was solved with Patterson methods (DIRDIF-97 [27]) and refined with shelxl-97 [28] against $F^{2}$ of all reflections. Non-hydrogen atoms were refined freely with anisotropic displacement parameters. Hydrogen atoms were refined as rigid groups. The crystal structure contains large voids (1087 $\AA^{3} /$ unit cell) filled with disordered dichloromethane and hexane molecules. Their contribution to the structure factors was secured by backFourier transformation (program platon [26], calc sQueeze, $344 \mathrm{e}^{-} /$unit cell). 599 refined parameters, no restraints. $R$ values $[I>2 \sigma(I)]: \quad R_{1}=0.0449, w R_{2}=$ $0.1027 . R$ values [all reflections]: $R_{1}=0.0681, w R_{2}=$ 0.1086 . $\mathrm{GoF}=1.070$. Rest electron density between -2.29 and 2.21 e $\AA^{-3}$. Molecular illustration, structure checking and calculations were performed with the PLATON package [26].

### 4.5.2. Crystal structure determination of complex $\mathbf{1 3}$

 $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{~W}+$ solvent, $\quad \mathrm{Fw}=676.31^{1}, \quad$ colourless block, $0.50 \times 0.25 \times 0.13 \mathrm{~mm}^{3}$, triclinic, $P \overline{1}$ (no. 2), $a=8.2135(6), \quad b=9.7430(6), \quad c=18.8082(11) \AA, \alpha=$ 95.296(5), $\quad \beta=96.453(6), \quad \gamma=108.070(6)^{\circ}, \quad V=$ 1408.87(16) $\AA^{3}, Z=2, \rho=1.594 \mathrm{~g} \mathrm{~cm}^{-3} .^{1}$ A total of 12483 reflections were measured on an Enraf-Nonius CAD4T diffractometer with rotating anode ( $\lambda=$ $0.71073 \AA$ ) at a temperature of $150(2) \mathrm{K}$. A total of 6478 reflections were unique ( $R_{\text {int }}=0.084$ ). The absorption correction was based on psi-scans (program PLAton [26], routine ABSP, $\mu=4.24 \mathrm{~mm}^{-1,1}{ }^{1} 0.82-$ 0.98 transmission). The structure was solved with Patterson methods (DIRDIF-97 [27]) and refined with Shelxl-97 [28] against $F^{2}$ of all reflections. Nonhydrogen atoms were refined freely with anisotropic displacement parameters. Hydrogen atoms were refined as rigid groups. The crystal structure contains a void (92 $\AA^{3} /$ unit cell) filled with disordered dichloromethane and hexane molecules. Their contribution to the structure factors was secured by backFourier transformation (program platon [26], calc SQueeze, $29 \mathrm{e}^{-} /$unit cell). 320 refined parameters, no restraints. $R$ values $[I>2 \sigma(I)]: \quad R_{1}=0.0280, w R_{2}=$ 0.0724 . $R$ values [all reflections]: $R_{1}=0.0324, w R_{2}=$ 0.0751 . GoF $=1.081$. Rest electron density between -1.29 and $1.51 \mathrm{e}^{\AA} \AA^{-3}$. Molecular illustration, structure checking and calculations were performed with the platon package [26].
## 5. Supplementary material

Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre, CCDC no. 146323 for compound 8 and CCDC no. 146324 for compound 13. Copies of this information may be obtained free of charge from the Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: + 44-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk or http://www.ccdc. cam.ac.uk).

## Acknowledgements

Acknowledgment is made to the Netherlands Organization for Scientific Research (NWO/CW) for support of this research. We thank Dr. H. Zappey for the HRMS measurements.

## References

[1] F. Mathey, A. Marinetti, J. Am. Chem. Soc. 104 (1982) 4484.
[2] (a) F. Mathey, Angew. Chem. 99 (1987) 285; Angew. Chem. Int. Ed. Engl. 26 (1987) 275. (b) K.B. Dillon, F. Mathey, J.F. Nixon, Phosphorus: The Carbon Copy, Wiley, Chichester,1998, pp. 19-39.
[3] (a) J.T. Hung, K. Lammertsma, J. Org. Chem. 58 (1993) 1800. (b) K. Lammertsma, J.-T. Hung, P. Chand, G.M. Gray, J. Org. Chem. 57 (1992) 6557. (c) A. Marinetti, F. Mathey, Organometallics 3 (1984) 456. (d) M.J. van Eis, F.J.J. de Kanter, W.H. de Wolf, K. Lammertsma, F. Bickelhaupt, M. Lutz, A.L. Spek, Tetrahedron, 56 (2000) 129.
[4] N.H.T. Huy, L. Ricard, F. Mathey, Heteroatom. Chem. 9 (1998) 597.
[5] R. Streubel, A. Ostrowski, H. Wilkens, F. Ruthe, J. Jeske, P.G. Jones, Angew. Chem. 109 (1997) 409; Angew. Chem. Int. Ed. Engl. 36 (1997) 378.
[6] A. Marinetti, F. Mathey, Organometallics 1 (1982) 1488.
[7] B. Deschamps, L. Ricard, F. Mathey, Polyhedron 8 (1989) 2671.
[8] J. Svara, F. Mathey, Organometallics 5 (1986) 1159.
[9] Y. Inubushi, N.H.T. Huy, F. Mathey, J. Chem. Soc. Chem. Commun. (1996) 1903.
[10] (a) N.H.T. Huy, L. Ricard, F. Mathey, Organometallics 16 (1997) 4501. (b) B. Wang, K.A. Nguyen, G.N. Srinivas, C.L. Watkins, S. Menzer, A.L. Spek, K. Lammertsma, Organometallics 18 (1999) 796.
[11] P. Le Floch, A. Marinetti, L. Ricard, F. Mathey, J. Am. Chem. Soc. 112 (1990) 2407-2410.
[12] (a) A. Marinetti, F. Mathey, Angew. Chem. 100 (1988) 1435; Angew. Chem. Int. Ed. Engl. 27 (1988) 1382. (b) A. Marinetti, L. Ricard, F. Mathey, Organometallics 9 (1990) 788. (c) A. Marinetti, S. Bauer, L. Ricard, F. Mathey, Organometallics 9 (1990) 793. (d) A. Marinetti, P. Le Floch, F. Mathey, Organometallics 10 (1991) 1190. (e) S. Shah, J.D. Protasiewicz, Chem. Commun. (1998) 1585.
[13] (a) S.K. Hadjikakou, P.D. Akrivos, P. Karagiannidis, E. Raptopoulou, A. Terzis, Inorg. Chim. Acta 210 (1993) 27. (b) S. Ramapabhu, N. Amstutz, E.A.C. Lucken, G. Bernardinelli, J. Chem. Soc., Dalton Trans. (1993) 871. (c) M.R. Churchill, F.J. Rotella, Inorg. Chem. 18 (1979) 166.
[14] K.B. Dillon, F. Mathey, J.F. Nixon, Phosphorus: The Carbon Copy, Wiley, Chichester, 1998, pp. 164-180.
[15] S. Attar, G.A. Bowmaker, N.W. Alcock, J.S. Frye, W.H. Bearden, J.H. Nelson, Inorg. Chem. 30 (1991) 4743-4753.
[16] (a) G.L. Soloveichik, O. Eisenstein, J.T. Poulton, W.E. Streib, J.C. Huffman, K.G. Caulton, Inorg. Chem. 31 (1992) 3306. (b) M. Shiotsuka, Y. Matsuda, Chem. Lett. (1994) 351. (c) H. Werner, H. Otto, T. Ngo-Khac, Ch. Burschka, J. Organomet. Chem. 262 (1984) 123.
[17] (a) E.C. Alyea, G. Ferguson, J. Malito, B.L. Ruhl, Inorg. Chem. 24 (1985) 3720. (b) G.A. Bowmaker, J.D. Cotton, P.C. Healy, J.D. Kildea, S.B. Silong, B.W. Skelton, A.H. White, Inorg. Chem. 28 (1989) 1462. (c) L.-J. Baker, G.A. Bowmaker, R.D. Hart, P.J. Harvey, P.C. Healy, A.H. White, Inorg. Chem. 33 (1994) 3925.
[18] H. Fritzsche, U. Hasserodt, F. Korte, Chem. Ber. 97 (1964) 1988.
[19] A. Breque, F. Mathey, Ph. Sarignac, Synthesis (1981) 983.
[20] B. Lukas, R.M.G. Roberts, J. Silver, A.S. Wells, J. Organomet. Chem. 256 (1983) 103.
[21] A. Marinetti, F. Mathey, Organometallics 3 (1984) 456.
[22] C.C. Santini, J. Fischer, F. Mathey, A. Mitschler, J. Am. Chem. Soc. 102 (1980) 5809.
[23] A. Marinetti, F. Mathey, J. Fischer, A. Mitschler, J. Chem. Soc. Chem. Commun. (1982) 667.
[24] R.C. Cookson, G.W.A. Fowles, D.K. Jenkins, J. Chem. Soc. 5 (1965) 6406.
[25] (a) S.O. Grim, D.A. Wheatland, W. McFarlane, J. Am. Chem. Soc. 89 (1967) 5573. (b) G.T. Andrews, I.J. Colquhoun, W. McFarlane, J. Chem. Soc., Dalton Trans. (1982) 2353.
[26] A.L. Spek, Platon. A Multipurpose Crystallographic Tool, Utrecht University, The Netherlands, 2000.
[27] P.T. Beurskens, G. Admiraal, G. Beurskens, W.P. Bosman, S. Garcia-Granda, R.O. Gould, J.M.M. Smits, C. Smykalla, The DIRDIF-97 Program System, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands, 1997.
[28] G.M. Sheldrick, SHELXL-97. Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.


[^0]:    * Corresponding author. Tel.: + 31-20-444-7474; fax: + 31-20-4447488.

    E-mail address: lammert@chem.vu.nl (K. Lammertsma).

[^1]:    ${ }^{1}$ Derived values do not contain the contribution of the disordered solvent.

